
Mapping of classes to IEEE 1633 Recommended Practices for Software Reliability
This table shows which of the Softrel courses map to each of the sections of the recommended practices.

Training class Software reliability task

IEEE 1633

Recommended

Practices for

software

reliability

5.1. Planning for software reliability

5.1.1 Characterize the software system

Software Failure

Modes Effects

Analysis Toolkit

5.2. Develop Failure Modes Model

5.2.1 Perform a defect root cause analysis

5.2.2 Perform Software Failure Modes Effects Analysis (SFMEA)

5.2.3 Include Software in the System Fault Tree Analysis

 5.3. Apply software reliability during development

Integrating software
and hardware
reliability

5.3.1 Identify/Obtain the initial system reliability objective – The required or desired MTBF, failure
rate, availability, reliability for the entire system.

IEEE 1633
Recommended
Practices for
software reliability

5.3.2 Perform a Software Reliability Assessment and Prediction – Predict the MTBF, failure rate,
availability, reliability and confidence bounds for each software LRU.

5.3.3 Sanity Check the Prediction – Compare the prediction to established ranges for similar software
LRUs

Integrating software
and hardware
reliability

5.3.4 Merge the predictions into the overall system predictions – Various methods exist to combine
the software and hardware predictions into one system prediction.

IEEE 1633
Recommended
Practices for
software reliability

5.3.5 Determine an appropriate overall Software Reliability Requirement – Now that the system
prediction is complete, revisit the initial reliability objective and modify as needed.

5.3.6 Plan the reliability growth – Compute the software predictions during and after a specific level
of reliability growth testing.

5.3.7 Perform a Sensitivity Analysis – Identify the practices, processes, techniques, risks that are most
sensitive to the predictions. Perform tradeoffs.

Integrating software
and hardware
reliability

5.3.8 Allocate the Required Reliability to the Software LRUs– The software and hardware
components are allocated a portion of the system objective based on the predicted values for
each LRU.

 5. 4. Apply Software Reliability during Testing

Design for test 5.4.1 Develop a reliability test suite

5.4.3 Measure test coverage

Integrating software
and hardware
reliability

5.4.4 Collect Fault and Failure Data– This data is collected during testing and is required for using the
software reliability metrics and models. This Sub-Clause includes 2 very simple metrics which
help determine the best reliability growth model.

5.4.5 Select Reliability Growth Models – The best models are those that fit the observed fault trends.

5.5 Make a release decision

5.5.1 Determine release stability

5.5.2 Forecast additional test duration

5.5.3 Forecast remaining defects and effort required to fix them

 6.0 Software reliability models

IEEE 1633
Recommended
Practices for
software reliability

6.1 Overview

6.2 Models that can be used before testing

Integrating software
and hardware
predictions

6.3 Models that can be used during and after testing

IEEE Recommended Practices for Software Reliability 2 D a y Training
Who should attend: Reliability engineers, systems engineers, software QA, software test engineers, software

management, and acquisitions personnel. Class handouts include the software reliability toolkit.

1.0 Getting started
Greetings and Introductions
Software Reliability Timeline
Industry guidance available for software reliability
Vocabulary
Overview of models that predict and estimate software reliability models
Hard facts
Mapping software to hardware reliability

• Failure modes that do and do not apply

• Where software fits within the product lifecycle
Common myths

• Top list of things that everyone thinks is related to reliable software (but really isn’t)

• Why software reliability growth is more limited than you think
Overview of methods for reliability testing

2.0 Planning for software reliability

3.0 Apply software reliability during development

Topics Section of IEEE 1633 2017

Characterize the software system 5.1.1

Define failures and criticality 5.1.2
Perform an initial risk assessment 5.1.3

Section of this presentation Section of IEEE 1633 2017
1. Predict normalized effective size 5.3.2.3.1
2. Predict testing or fielded defect density using the SEI CMMi, industry

type, Shortcut Model

3. Predict total testing and fielded defects

4. Predict when defects will be discovered over time 5.3.2.3.2
5. Predict failure rate and MTTF 5.3.2.3.3

5.1. Sanity check the predictions 5.3.3
6. Predict reliability 5.3.2.3.4

7. Predict availability 5.3.2.3.5

8. Sensitivity analysis 5.3.7

9. Apply predictions with incremental development 5.3.2.4

10. Predict defect pileup 5.3.6
11. Predict staff required to maintain software 5.5

Detailed methods for steps 1-8

Step 1. Predicting size of COTS components 5.3.2.5
Step 2. Advanced models for predicting defect density - Quick Assessment,
Full-scale, Neufelder, Rome Laboratory, Historical Data

5.3.2.3.1, 6.2 and Annex B

Step 4. Other options for predicting growth rate Not included

Step 8. Advanced sensitivity analysis 5.3.7

Integrating software and hardware predictions
Who should attend: Reliability engineers, systems engineers, software QA, software test engineers, software

management and acquisitions personnel.

1.0 Combining software and hardware reliability

2.0 Apply software reliability during testing

Software Failure Modes Effects Analysis Toolkit
This class outline maps directly to the below process for performing a software FMEA. This class maps to section 2.0 of

the IEEE 1633 Recommended Practices for Software Reliability, 2017.

Section of this training Section of IEEE 1633 Recommended
Practices for Software Reliability 2017

Overview -The reliability growth curve for software 5.4.4

How to know where the program is on that curve

1.0 Collect the data 5.4.4

2.0 Plot the data 5.4.4 and 5.4.5
How to estimate the failure rate, MTBF from that curve

3.0 Select the best model for the current trend 5.4.5
4.0 Compute the reliability figures of merit 6.3 and Annex B

5.0 Validate the accuracy of the estimation 5.4.7

6.0 Make a release decision 5.5

Section of this training Section of IEEE 1633 Recommended
Practices for Software Reliability 2017

1.0 Identify an initial system reliability objective 5.3.1
2.0 Determine an appropriate overall software reliability
requirement

5.3.5

3.0 Merge the software reliability predictions into the
system prediction

5.3.4

4.0 Allocate the required reliability to the software LRUs 5.3.8
5.0 If the system objective can’t be met, perform a system
level sensitivity analysis

5.3.7.2

Who should attend: Reliability engineers, systems engineers, software QA, software test engineers, software

management, software architects, software requirements engineers, and acquisitions personnel. Class handouts include

the Software FMEA toolkit and the “Effective Application of Software Failure Modes Effects Analysis” book.

Class outline

Introduction - statement of goals for class and schedule

Real examples of how software FMEAs were used to find serious defects in a cost effective manner.

1. Preparing the SFMEA.
a. Identify the scope of the SFMEA - the riskiest and most critical part of the software.
b. Identify the people and artifacts needed to do the SFMEA. Identify the viewpoints that are most

applicable for the current phase of development and project risks.
c. Identify the ground rules for the SFMEA.

d. Identify the failure definition and scoring criteria to be used for the SFMEA

2. Brainstorm past failure modes. Employ a defect root cause analysis or software fault tree analysis.

Lunch Break

3. Identify failure modes for the functional SFMEA viewpoint

4. Identify consequences

5. Mitigate

6. Generate the Critical Items List

Class example - The class will see a real example of a functional SFMEA

Identify failure modes for the interface SFMEA viewpoint. Interface FMEAs analyze failure modes between
software, firmware and hardware.

Class example - The class will see a real example of an interface SFMEA

Identify failure modes for the detailed SFMEA viewpoint. A detailed design FMEA is performed on the
design or code.

Identify failure modes for the maintenance SFMEA viewpoint. A maintenance process FMEA analyzes the
failure modes related to how people support the software once it is deployed. The focus is on failure
modes that would cause previously functional software to stop functioning.

Lunch

How to perform a vulnerability SFMEA. This is a detailed SFMEA that focuses on the design and coding

failure modes that are also related to vulnerabilities

How to perform a production process FMEA. A production process FMEA analyzes the failure modes
related to how people produce the software product. It's possible for the requirements, design and code
to be working, but for the software to be unusable because there is no source control.

How to perform an installation process FMEA. An installation process FMEA analyzes the failure modes
related to an end user's or system installation. For example, the software could be working properly but
the installation of it might fail. Or the end user may have an incorrect user's manual and be unable to use
the software. Class exercise - The entire FMEA process will be executed from analyzing resources to
improving the product.

How to NOT do a SFMEA

Closing, Q & A

Optional third day for onsite courses. The third day is spent doing FMEAs on your product and process

with the guidance of the instructor.

